ak.to_categorical#
Defined in awkward.operations.ak_to_categorical on line 17.
- ak.to_categorical(array, *, highlevel=True, behavior=None)#
 - Parameters
 array – Array-like data (anything
ak.to_layoutrecognizes).highlevel (bool) – If True, return an
ak.Array; otherwise, return a low-levelak.contents.Contentsubclass.behavior (None or dict) – Custom
ak.behaviorfor the output array, if high-level.
Creates a categorical dataset, which has the following properties:
only distinct values (categories) are stored in their entirety,
pointers to those distinct values are represented by integers (an
ak.contents.IndexedArrayorak.contents.IndexedOptionArraylabeled with parameter"__array__" = "categorical".
This is equivalent to R’s “factor”, Pandas’s “categorical”, and
Arrow/Parquet’s “dictionary encoding.” It differs from generic uses of
ak.contents.IndexedArray and ak.contents.IndexedOptionArray in Awkward
Arrays by the guarantee of no duplicate categories and the "categorical"
parameter.
>>> array = ak.Array([["one", "two", "three"], [], ["three", "two"]])
>>> categorical = ak.to_categorical(array)
>>> categorical
<Array [['one', 'two', 'three'], ..., [...]] type='3 * var * categorical[ty...'>
>>> categorical.type.show()
3 * var * categorical[type=string]
>>> categorical.to_list() == array.to_list()
True
>>> ak.categories(categorical)
<Array ['one', 'two', 'three'] type='3 * string'>
>>> ak.is_categorical(categorical)
True
>>> ak.from_categorical(categorical)
<Array [['one', 'two', 'three'], ..., ['three', ...]] type='3 * var * string'>
This function descends through nested lists, but not into the fields of
records, so records can be categories. To make categorical record
fields, split up the record, apply this function to each desired field,
and ak.zip the results together.
>>> records = ak.Array([
...     {"x": 1.1, "y": "one"},
...     {"x": 2.2, "y": "two"},
...     {"x": 3.3, "y": "three"},
...     {"x": 2.2, "y": "two"},
...     {"x": 1.1, "y": "one"}
... ])
>>> records
    <Array [{x: 1.1, y: 'one'}, ..., {x: 1.1, ...}] type='5 * {x: float64, y: s...'>
>>> categorical_records = ak.zip({
...     "x": ak.to_categorical(records["x"]),
...     "y": ak.to_categorical(records["y"]),
... })
>>> categorical_records
<Array [{x: 1.1, y: 'one'}, ... y: 'one'}] type='5 * {"x": categorical[type=floa...'>
>>> categorical_records.type.show()
5 * {
    x: categorical[type=float64],
    y: categorical[type=string]
}
>>> categorical_records.to_list() == records.to_list()
True
The check for uniqueness is currently implemented in a Python loop, so conversion to categorical should be regarded as expensive. (This can change, but it would always be an _n log(n)_ operation.)
See also ak.is_categorical, ak.categories, ak.from_categorical.