How to create arrays of strings#

Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.

NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.

import awkward as ak
import numpy as np

From Python strings#

The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().

ak.Array(["one", "two", "three"])
['one',
 'two',
 'three']
----------------
type: 3 * string

They may be nested within anything.

ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'],
 [],
 ['three']]
----------------------
type: 3 * var * string

From NumPy arrays#

NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().

numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one',
 'two',
 'three',
 'four']
----------------
type: 4 * string

Operations with strings#

Since strings are really just lists, some of the list operations “just work” on strings.

ak.num(awkward_array)
[3,
 3,
 5,
 4]
---------------
type: 4 * int64
awkward_array[:, 1:]
['ne',
 'wo',
 'hree',
 'our']
----------------
type: 4 * string

Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).

awkward_array == "three"
[False,
 False,
 True,
 False]
--------------
type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False,
 False,
 True,
 True]
--------------
type: 4 * bool

Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.

ak.sort(awkward_array)
['four',
 'one',
 'three',
 'two']
----------------
type: 4 * string

Still other operations had to be inhibited, since they wouldn’t make sense for strings.

np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1360, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1359 with ak._errors.OperationErrorContext(name, arguments):
-> 1360     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:318, in array_ufunc(ufunc, method, inputs, kwargs)
    316             return result[0]
--> 318     out = ak._do.recursively_apply(
    319         inputs[where],
    320         unary_action,
    321         behavior,
    322         function_name=ufunc.__name__,
    323         allow_records=False,
    324     )
    326 else:

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_do.py:35, in recursively_apply(layout, action, behavior, depth_context, lateral_context, allow_records, keep_parameters, numpy_to_regular, return_simplified, return_array, function_name, regular_to_jagged)
     34 if isinstance(layout, Content):
---> 35     return layout._recursively_apply(
     36         action,
     37         behavior,
     38         1,
     39         copy.copy(depth_context),
     40         lateral_context,
     41         {
     42             "allow_records": allow_records,
     43             "keep_parameters": keep_parameters,
     44             "numpy_to_regular": numpy_to_regular,
     45             "regular_to_jagged": regular_to_jagged,
     46             "return_simplified": return_simplified,
     47             "return_array": return_array,
     48             "function_name": function_name,
     49         },
     50     )
     52 elif isinstance(layout, Record):

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/contents/listarray.py:1495, in ListArray._recursively_apply(self, action, behavior, depth, depth_context, lateral_context, options)
   1486         content._recursively_apply(
   1487             action,
   1488             behavior,
   (...)
   1492             options,
   1493         )
-> 1495 result = action(
   1496     self,
   1497     depth=depth,
   1498     depth_context=depth_context,
   1499     lateral_context=lateral_context,
   1500     continuation=continuation,
   1501     behavior=behavior,
   1502     backend=self._backend,
   1503     options=options,
   1504 )
   1506 if isinstance(result, Content):

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:311, in array_ufunc.<locals>.unary_action(layout, **ignore)
    310 nextinputs[where] = layout
--> 311 result = action(tuple(nextinputs), **ignore)
    312 if result is None:

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:291, in array_ufunc.<locals>.action(inputs, **ignore)
    290             error_message.append(type(x).__name__)
--> 291     raise TypeError(
    292         "no {}.{} overloads for custom types: {}".format(
    293             type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
    294         )
    295     )
    297 return None

TypeError: no numpy.sqrt overloads for custom types: string

The above exception was the direct cause of the following exception:

TypeError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1359, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1357     arguments[i] = arg
   1358 arguments.update(kwargs)
-> 1359 with ak._errors.OperationErrorContext(name, arguments):
   1360     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:56, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
     53 try:
     54     # Handle caught exception
     55     if exception_type is not None and self.primary() is self:
---> 56         self.handle_exception(exception_type, exception_value)
     57 finally:
     58     # Step out of the way so that another ErrorContext can become primary.
     59     if self.primary() is self:

File ~/micromamba-root/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:66, in ErrorContext.handle_exception(self, cls, exception)
     64     self.decorate_exception(cls, exception)
     65 else:
---> 66     raise self.decorate_exception(cls, exception)

TypeError: no numpy.sqrt overloads for custom types: string

This error occurred while calling

    numpy.sqrt.__call__(
        <Array ['one', 'two', 'three', 'four'] type='4 * string'>
    )

Categorical strings#

A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.

The ak.to_categorical() function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.

uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------
type: 8 * string
categorized = ak.to_categorical(uncategorized)
categorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------------------------
type: 8 * categorical[type=string]

Internally, the data now have an index that selects from a set of unique strings.

categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three',
 'one',
 'two']
----------------
type: 3 * string

The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.

categorized == "one"
[False,
 True,
 False,
 False,
 False,
 True,
 True,
 True]
--------------
type: 8 * bool

With ArrayBuilder#

ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.

(This is what ak.from_iter() uses internally to accumulate data.)

builder = ak.ArrayBuilder()

builder.string("one")
builder.append("two")
builder.append("three")

array = builder.snapshot()
array
['one',
 'two',
 'three']
----------------
type: 3 * string