How to create arrays of strings#

Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.

NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.

import awkward as ak
import numpy as np

From Python strings#

The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().

ak.Array(["one", "two", "three"])
['one',
 'two',
 'three']
----------------
type: 3 * string

They may be nested within anything.

ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'],
 [],
 ['three']]
----------------------
type: 3 * var * string

From NumPy arrays#

NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().

numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one',
 'two',
 'three',
 'four']
----------------
type: 4 * string

Operations with strings#

Since strings are really just lists, some of the list operations “just work” on strings.

ak.num(awkward_array)
[3,
 3,
 5,
 4]
---------------
type: 4 * int64
awkward_array[:, 1:]
['ne',
 'wo',
 'hree',
 'our']
----------------
type: 4 * string

Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).

awkward_array == "three"
[False,
 False,
 True,
 False]
--------------
type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False,
 False,
 True,
 True]
--------------
type: 4 * bool

Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.

ak.sort(awkward_array)
['four',
 'one',
 'three',
 'two']
----------------
type: 4 * string

Still other operations had to be inhibited, since they wouldn’t make sense for strings.

np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1402, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1401 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1402     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:442, in array_ufunc(ufunc, method, inputs, kwargs)
    440             return result[0]
--> 442     out = ak._do.recursively_apply(
    443         inputs[where],
    444         unary_action,
    445         behavior,
    446         function_name=ufunc.__name__,
    447         allow_records=False,
    448     )
    450 else:

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_do.py:35, in recursively_apply(layout, action, behavior, depth_context, lateral_context, allow_records, keep_parameters, numpy_to_regular, return_simplified, return_array, function_name, regular_to_jagged)
     34 if isinstance(layout, Content):
---> 35     return layout._recursively_apply(
     36         action,
     37         behavior,
     38         1,
     39         copy.copy(depth_context),
     40         lateral_context,
     41         {
     42             "allow_records": allow_records,
     43             "keep_parameters": keep_parameters,
     44             "numpy_to_regular": numpy_to_regular,
     45             "regular_to_jagged": regular_to_jagged,
     46             "return_simplified": return_simplified,
     47             "return_array": return_array,
     48             "function_name": function_name,
     49         },
     50     )
     52 elif isinstance(layout, Record):

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/contents/listarray.py:1559, in ListArray._recursively_apply(self, action, behavior, depth, depth_context, lateral_context, options)
   1550         content._recursively_apply(
   1551             action,
   1552             behavior,
   (...)
   1556             options,
   1557         )
-> 1559 result = action(
   1560     self,
   1561     depth=depth,
   1562     depth_context=depth_context,
   1563     lateral_context=lateral_context,
   1564     continuation=continuation,
   1565     behavior=behavior,
   1566     backend=self._backend,
   1567     options=options,
   1568 )
   1570 if isinstance(result, Content):

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:435, in array_ufunc.<locals>.unary_action(layout, **ignore)
    434 nextinputs[where] = layout
--> 435 result = action(tuple(nextinputs), **ignore)
    436 if result is None:

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:351, in array_ufunc.<locals>.action(inputs, **ignore)
    347     if all(
    348         x.is_list and x.parameter("__array__") in ("string", "bytestring")
    349         for x in contents
    350     ):
--> 351         raise TypeError(
    352             "{}.{} is not implemented for string types. "
    353             "To register an implementation, add a name to these string(s) and register a behavior overload".format(
    354                 type(ufunc).__module__, ufunc.__name__
    355             )
    356         )
    358 if ufunc is numpy.matmul:

TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload

The above exception was the direct cause of the following exception:

TypeError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1401, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1336 """
   1337 Intercepts attempts to pass this Array to a NumPy
   1338 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
   (...)
   1398 See also #__array_function__.
   1399 """
   1400 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1401 with ak._errors.OperationErrorContext(name, inputs, kwargs):
   1402     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:67, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
     60 try:
     61     # Handle caught exception
     62     if (
     63         exception_type is not None
     64         and issubclass(exception_type, Exception)
     65         and self.primary() is self
     66     ):
---> 67         self.handle_exception(exception_type, exception_value)
     68 finally:
     69     # `_kwargs` may hold cyclic references, that we really want to avoid
     70     # as this can lead to large buffers remaining in memory for longer than absolutely necessary
     71     # Let's just clear this, now.
     72     self._kwargs.clear()

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:82, in ErrorContext.handle_exception(self, cls, exception)
     80     self.decorate_exception(cls, exception)
     81 else:
---> 82     raise self.decorate_exception(cls, exception)

TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload

This error occurred while calling

    numpy.sqrt.__call__(
        <Array ['one', 'two', 'three', 'four'] type='4 * string'>
    )

Categorical strings#

A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.

The ak.to_categorical() function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.

uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------
type: 8 * string
categorized = ak.to_categorical(uncategorized)
categorized
/home/runner/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/operations/ak_to_categorical.py:92: DeprecationWarning: In version 2.5.0, this will be an error.
To raise these warnings as errors (and get stack traces to find out where they're called), run
    import warnings
    warnings.filterwarnings("error", module="awkward.*")
after the first `import awkward` or use `@pytest.mark.filterwarnings("error:::awkward.*")` in pytest.
Issue: The general purpose `ak.to_categorical` has been replaced by `ak.str.to_categorical`.
  return _impl(array, highlevel, behavior)
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------------------------
type: 8 * categorical[type=string]

Internally, the data now have an index that selects from a set of unique strings.

categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three',
 'one',
 'two']
----------------
type: 3 * string

The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.

categorized == "one"
[False,
 True,
 False,
 False,
 False,
 True,
 True,
 True]
--------------
type: 8 * bool

With ArrayBuilder#

ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.

(This is what ak.from_iter() uses internally to accumulate data.)

builder = ak.ArrayBuilder()

builder.string("one")
builder.append("two")
builder.append("three")

array = builder.snapshot()
array
['one',
 'two',
 'three']
----------------
type: 3 * string