How to create arrays of strings#
Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8
numbers. As such, the variable-length data are efficiently stored.
NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.
import awkward as ak
import numpy as np
From Python strings#
The ak.Array
constructor and ak.from_iter()
recognize strings, and strings are returned by ak.to_list()
.
ak.Array(["one", "two", "three"])
['one', 'two', 'three'] ---------------- type: 3 * string
They may be nested within anything.
ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'], [], ['three']] ---------------------- type: 3 * var * string
From NumPy arrays#
NumPy strings are also recognized by ak.from_numpy()
and ak.to_numpy()
.
numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one', 'two', 'three', 'four'] ---------------- type: 4 * string
Operations with strings#
Since strings are really just lists, some of the list operations “just work” on strings.
ak.num(awkward_array)
[3, 3, 5, 4] --------------- type: 4 * int64
awkward_array[:, 1:]
['ne', 'wo', 'hree', 'our'] ---------------- type: 4 * string
Others had to be specially overloaded for the string case, such as string-equality. The default meaning for ==
would be to descend to the lowest level and compare numbers (characters, in this case).
awkward_array == "three"
[False, False, True, False] -------------- type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False, False, True, True] -------------- type: 4 * bool
Similarly, ak.sort()
and ak.argsort()
sort strings lexicographically, not individual characters.
ak.sort(awkward_array)
['four', 'one', 'three', 'two'] ---------------- type: 4 * string
Still other operations had to be inhibited, since they wouldn’t make sense for strings.
np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1438, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1437 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1438 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:449, in array_ufunc(ufunc, method, inputs, kwargs)
447 return None
--> 449 out = ak._broadcasting.broadcast_and_apply(
450 inputs, action, allow_records=False, function_name=ufunc.__name__
451 )
453 if len(out) == 1:
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_broadcasting.py:1026, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
1025 isscalar = []
-> 1026 out = apply_step(
1027 backend,
1028 broadcast_pack(inputs, isscalar),
1029 action,
1030 0,
1031 depth_context,
1032 lateral_context,
1033 {
1034 "allow_records": allow_records,
1035 "left_broadcast": left_broadcast,
1036 "right_broadcast": right_broadcast,
1037 "numpy_to_regular": numpy_to_regular,
1038 "regular_to_jagged": regular_to_jagged,
1039 "function_name": function_name,
1040 "broadcast_parameters_rule": broadcast_parameters_rule,
1041 },
1042 )
1043 assert isinstance(out, tuple)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_broadcasting.py:1004, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
1003 elif result is None:
-> 1004 return continuation()
1005 else:
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_broadcasting.py:973, in apply_step.<locals>.continuation()
972 elif any(x.is_list and not is_string_like(x) for x in contents):
--> 973 return broadcast_any_list()
975 # Any RecordArrays?
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_broadcasting.py:629, in apply_step.<locals>.broadcast_any_list()
627 nextparameters.append(NO_PARAMETERS)
--> 629 outcontent = apply_step(
630 backend,
631 nextinputs,
632 action,
633 depth + 1,
634 copy.copy(depth_context),
635 lateral_context,
636 options,
637 )
638 assert isinstance(outcontent, tuple)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_broadcasting.py:986, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
980 raise ValueError(
981 "cannot broadcast: {}{}".format(
982 ", ".join(repr(type(x)) for x in inputs), in_function(options)
983 )
984 )
--> 986 result = action(
987 inputs,
988 depth=depth,
989 depth_context=depth_context,
990 lateral_context=lateral_context,
991 continuation=continuation,
992 backend=backend,
993 options=options,
994 )
996 if isinstance(result, tuple) and all(isinstance(x, Content) for x in result):
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:385, in array_ufunc.<locals>.action(inputs, **ignore)
381 if all(
382 x.is_list and x.parameter("__array__") in ("string", "bytestring")
383 for x in contents
384 ):
--> 385 raise TypeError(
386 f"{type(ufunc).__module__}.{ufunc.__name__} is not implemented for string types. "
387 "To register an implementation, add a name to these string(s) and register a behavior overload"
388 )
390 if ufunc is numpy.matmul:
TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload
The above exception was the direct cause of the following exception:
TypeError Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1437, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1372 """
1373 Intercepts attempts to pass this Array to a NumPy
1374 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
(...)
1434 See also #__array_function__.
1435 """
1436 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1437 with ak._errors.OperationErrorContext(name, inputs, kwargs):
1438 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:67, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
60 try:
61 # Handle caught exception
62 if (
63 exception_type is not None
64 and issubclass(exception_type, Exception)
65 and self.primary() is self
66 ):
---> 67 self.handle_exception(exception_type, exception_value)
68 finally:
69 # `_kwargs` may hold cyclic references, that we really want to avoid
70 # as this can lead to large buffers remaining in memory for longer than absolutely necessary
71 # Let's just clear this, now.
72 self._kwargs.clear()
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:82, in ErrorContext.handle_exception(self, cls, exception)
80 self.decorate_exception(cls, exception)
81 else:
---> 82 raise self.decorate_exception(cls, exception)
TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload
This error occurred while calling
numpy.sqrt.__call__(
<Array ['one', 'two', 'three', 'four'] type='4 * string'>
)
Categorical strings#
A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.
The ak.to_categorical()
function makes Awkward Arrays categorical in this sense. ak.to_arrow()
and ak.to_parquet()
recognize categorical data and convert it to the corresponding Arrow and Parquet types.
uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three', 'one', 'two', 'two', 'three', 'one', 'one', 'one'] ---------------- type: 8 * string
categorized = ak.to_categorical(uncategorized)
categorized
/home/runner/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/operations/ak_to_categorical.py:92: DeprecationWarning: In version 2.5.0, this will be an error.
To raise these warnings as errors (and get stack traces to find out where they're called), run
import warnings
warnings.filterwarnings("error", module="awkward.*")
after the first `import awkward` or use `@pytest.mark.filterwarnings("error:::awkward.*")` in pytest.
Issue: The general purpose `ak.to_categorical` has been replaced by `ak.str.to_categorical`.
return _impl(array, highlevel, behavior)
['three', 'one', 'two', 'two', 'three', 'one', 'one', 'one'] ---------------------------------- type: 8 * categorical[type=string]
Internally, the data now have an index that selects from a set of unique strings.
categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three', 'one', 'two'] ---------------- type: 3 * string
The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.
categorized == "one"
[False, True, False, False, False, True, True, True] -------------- type: 8 * bool
With ArrayBuilder#
ak.ArrayBuilder()
is described in more detail in this tutorial, but you can add strings by calling the string
method or simply appending them.
(This is what ak.from_iter()
uses internally to accumulate data.)
builder = ak.ArrayBuilder()
builder.string("one")
builder.append("two")
builder.append("three")
array = builder.snapshot()
array
['one', 'two', 'three'] ---------------- type: 3 * string