How to create arrays of strings#

Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.

NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.

import awkward as ak
import numpy as np

From Python strings#

The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().

ak.Array(["one", "two", "three"])
['one',
 'two',
 'three']
----------------
type: 3 * string

They may be nested within anything.

ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'],
 [],
 ['three']]
----------------------
type: 3 * var * string

From NumPy arrays#

NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().

numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one',
 'two',
 'three',
 'four']
----------------
type: 4 * string

Operations with strings#

Since strings are really just lists, some of the list operations “just work” on strings.

ak.num(awkward_array)
[3,
 3,
 5,
 4]
---------------
type: 4 * int64
awkward_array[:, 1:]
['ne',
 'wo',
 'hree',
 'our']
----------------
type: 4 * string

Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).

awkward_array == "three"
[False,
 False,
 True,
 False]
--------------
type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False,
 False,
 True,
 True]
--------------
type: 4 * bool

Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.

ak.sort(awkward_array)
['four',
 'one',
 'three',
 'two']
----------------
type: 4 * string

Still other operations had to be inhibited, since they wouldn’t make sense for strings.

np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1511, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1509 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
   1510 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1511     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:458, in array_ufunc(ufunc, method, inputs, kwargs)
    450         raise TypeError(
    451             "no {}.{} overloads for custom types: {}".format(
    452                 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
    453             )
    454         )
    456     return None
--> 458 out = ak._broadcasting.broadcast_and_apply(
    459     inputs, action, allow_records=False, function_name=ufunc.__name__
    460 )
    462 if len(out) == 1:
    463     return wrap_layout(out[0], behavior=behavior, attrs=attrs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:980, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
    978 backend = backend_of(*inputs, coerce_to_common=False)
    979 isscalar = []
--> 980 out = apply_step(
    981     backend,
    982     broadcast_pack(inputs, isscalar),
    983     action,
    984     0,
    985     depth_context,
    986     lateral_context,
    987     {
    988         "allow_records": allow_records,
    989         "left_broadcast": left_broadcast,
    990         "right_broadcast": right_broadcast,
    991         "numpy_to_regular": numpy_to_regular,
    992         "regular_to_jagged": regular_to_jagged,
    993         "function_name": function_name,
    994         "broadcast_parameters_rule": broadcast_parameters_rule,
    995     },
    996 )
    997 assert isinstance(out, tuple)
    998 return tuple(broadcast_unpack(x, isscalar) for x in out)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:958, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
    956     return result
    957 elif result is None:
--> 958     return continuation()
    959 else:
    960     raise AssertionError(result)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:927, in apply_step.<locals>.continuation()
    925 # Any non-string list-types?
    926 elif any(x.is_list and not is_string_like(x) for x in contents):
--> 927     return broadcast_any_list()
    929 # Any RecordArrays?
    930 elif any(x.is_record for x in contents):

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:630, in apply_step.<locals>.broadcast_any_list()
    627         nextinputs.append(x)
    628         nextparameters.append(NO_PARAMETERS)
--> 630 outcontent = apply_step(
    631     backend,
    632     nextinputs,
    633     action,
    634     depth + 1,
    635     copy.copy(depth_context),
    636     lateral_context,
    637     options,
    638 )
    639 assert isinstance(outcontent, tuple)
    640 parameters = parameters_factory(nextparameters, len(outcontent))

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:940, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
    933     else:
    934         raise ValueError(
    935             "cannot broadcast: {}{}".format(
    936                 ", ".join(repr(type(x)) for x in inputs), in_function(options)
    937             )
    938         )
--> 940 result = action(
    941     inputs,
    942     depth=depth,
    943     depth_context=depth_context,
    944     lateral_context=lateral_context,
    945     continuation=continuation,
    946     backend=backend,
    947     options=options,
    948 )
    950 if isinstance(result, tuple) and all(isinstance(x, Content) for x in result):
    951     if any(content.backend is not backend for content in result):

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:394, in array_ufunc.<locals>.action(inputs, **ignore)
    389     # Do we have all-strings? If so, we can't proceed
    390     if all(
    391         x.is_list and x.parameter("__array__") in ("string", "bytestring")
    392         for x in contents
    393     ):
--> 394         raise TypeError(
    395             f"{type(ufunc).__module__}.{ufunc.__name__} is not implemented for string types. "
    396             "To register an implementation, add a name to these string(s) and register a behavior overload"
    397         )
    399 if ufunc is numpy.matmul:
    400     raise NotImplementedError(
    401         "matrix multiplication (`@` or `np.matmul`) is not yet implemented for Awkward Arrays"
    402     )

TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload

This error occurred while calling

    numpy.sqrt.__call__(
        <Array ['one', 'two', 'three', 'four'] type='4 * string'>
    )

Categorical strings#

A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.

The ak.str.to_categorical() (requires PyArrow) function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.

uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------
type: 8 * string
categorized = ak.str.to_categorical(uncategorized)
categorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------------------------
type: 8 * categorical[type=string]

Internally, the data now have an index that selects from a set of unique strings.

categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three',
 'one',
 'two']
----------------
type: 3 * string

The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.

categorized == "one"
[False,
 True,
 False,
 False,
 False,
 True,
 True,
 True]
--------------
type: 8 * bool

With ArrayBuilder#

ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.

(This is what ak.from_iter() uses internally to accumulate data.)

builder = ak.ArrayBuilder()

builder.string("one")
builder.append("two")
builder.append("three")

array = builder.snapshot()
array
['one',
 'two',
 'three']
----------------
type: 3 * string