How to create arrays of strings#

Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.

NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.

import awkward as ak
import numpy as np

From Python strings#

The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().

ak.Array(["one", "two", "three"])
['one',
 'two',
 'three']
----------------
type: 3 * string

They may be nested within anything.

ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'],
 [],
 ['three']]
----------------------
type: 3 * var * string

From NumPy arrays#

NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().

numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one',
 'two',
 'three',
 'four']
----------------
type: 4 * string

Operations with strings#

Since strings are really just lists, some of the list operations “just work” on strings.

ak.num(awkward_array)
[3,
 3,
 5,
 4]
---------------
type: 4 * int64
awkward_array[:, 1:]
['ne',
 'wo',
 'hree',
 'our']
----------------
type: 4 * string

Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).

awkward_array == "three"
[False,
 False,
 True,
 False]
--------------
type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False,
 False,
 True,
 True]
--------------
type: 4 * bool

Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.

ak.sort(awkward_array)
['four',
 'one',
 'three',
 'two']
----------------
type: 4 * string

Still other operations had to be inhibited, since they wouldn’t make sense for strings.

np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1356, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1355 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1356     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:317, in array_ufunc(ufunc, method, inputs, kwargs)
    315             return result[0]
--> 317     out = ak._do.recursively_apply(
    318         inputs[where],
    319         unary_action,
    320         behavior,
    321         function_name=ufunc.__name__,
    322         allow_records=False,
    323     )
    325 else:

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_do.py:35, in recursively_apply(layout, action, behavior, depth_context, lateral_context, allow_records, keep_parameters, numpy_to_regular, return_simplified, return_array, function_name, regular_to_jagged)
     34 if isinstance(layout, Content):
---> 35     return layout._recursively_apply(
     36         action,
     37         behavior,
     38         1,
     39         copy.copy(depth_context),
     40         lateral_context,
     41         {
     42             "allow_records": allow_records,
     43             "keep_parameters": keep_parameters,
     44             "numpy_to_regular": numpy_to_regular,
     45             "regular_to_jagged": regular_to_jagged,
     46             "return_simplified": return_simplified,
     47             "return_array": return_array,
     48             "function_name": function_name,
     49         },
     50     )
     52 elif isinstance(layout, Record):

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/contents/listarray.py:1557, in ListArray._recursively_apply(self, action, behavior, depth, depth_context, lateral_context, options)
   1548         content._recursively_apply(
   1549             action,
   1550             behavior,
   (...)
   1554             options,
   1555         )
-> 1557 result = action(
   1558     self,
   1559     depth=depth,
   1560     depth_context=depth_context,
   1561     lateral_context=lateral_context,
   1562     continuation=continuation,
   1563     behavior=behavior,
   1564     backend=self._backend,
   1565     options=options,
   1566 )
   1568 if isinstance(result, Content):

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:310, in array_ufunc.<locals>.unary_action(layout, **ignore)
    309 nextinputs[where] = layout
--> 310 result = action(tuple(nextinputs), **ignore)
    311 if result is None:

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_connect/numpy.py:290, in array_ufunc.<locals>.action(inputs, **ignore)
    289             error_message.append(type(x).__name__)
--> 290     raise TypeError(
    291         "no {}.{} overloads for custom types: {}".format(
    292             type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
    293         )
    294     )
    296 return None

TypeError: no numpy.sqrt overloads for custom types: string

The above exception was the direct cause of the following exception:

TypeError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/highlevel.py:1355, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1290 """
   1291 Intercepts attempts to pass this Array to a NumPy
   1292 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
   (...)
   1352 See also #__array_function__.
   1353 """
   1354 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1355 with ak._errors.OperationErrorContext(name, inputs, kwargs):
   1356     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:63, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
     60 try:
     61     # Handle caught exception
     62     if exception_type is not None and self.primary() is self:
---> 63         self.handle_exception(exception_type, exception_value)
     64 finally:
     65     # `_kwargs` may hold cyclic references, that we really want to avoid
     66     # as this can lead to large buffers remaining in memory for longer than absolutely necessary
     67     # Let's just clear this, now.
     68     self._kwargs.clear()

File ~/micromamba/envs/awkward-docs/lib/python3.10/site-packages/awkward/_errors.py:78, in ErrorContext.handle_exception(self, cls, exception)
     76     self.decorate_exception(cls, exception)
     77 else:
---> 78     raise self.decorate_exception(cls, exception)

TypeError: no numpy.sqrt overloads for custom types: string

This error occurred while calling

    numpy.sqrt.__call__(
        <Array ['one', 'two', 'three', 'four'] type='4 * string'>
    )

Categorical strings#

A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.

The ak.to_categorical() function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.

uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------
type: 8 * string
categorized = ak.to_categorical(uncategorized)
categorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------------------------
type: 8 * categorical[type=string]

Internally, the data now have an index that selects from a set of unique strings.

categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three',
 'one',
 'two']
----------------
type: 3 * string

The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.

categorized == "one"
[False,
 True,
 False,
 False,
 False,
 True,
 True,
 True]
--------------
type: 8 * bool

With ArrayBuilder#

ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.

(This is what ak.from_iter() uses internally to accumulate data.)

builder = ak.ArrayBuilder()

builder.string("one")
builder.append("two")
builder.append("three")

array = builder.snapshot()
array
['one',
 'two',
 'three']
----------------
type: 3 * string