Skip to main content
Ctrl
+
K
Site Navigation
Getting started
User guide
API reference
Contributor guide
Release history
GitHub
PyPI
Gitter
Site Navigation
Getting started
User guide
API reference
Contributor guide
Release history
GitHub
PyPI
Gitter
Section Navigation
10 minutes to Awkward Array
Converting arrays
NumPy
Python objects
JSON
Arrow and Parquet
Pandas
Generic buffers
ROOT via RDataFrame
Creating new arrays
Arrays of lists
Arrays of records
Arrays of missing data
Arrays of strings
Unflattening and grouping [todo]
ArrayBuilder (easy & general)
Direct constructors (fastest)
Examining arrays
Data type
Single item detail [todo]
Listing fields/keys/columns
Simple slicing [todo]
Checking validity [todo]
Numerical math
NumPy functions [todo]
Awkward broadcasting [todo]
Reducing (sum/min/any/all) [todo]
Statistics (mean/var/std) [todo]
Using argmin/argmax [todo]
On GPUs [todo]
Filtering data
By number of items [todo]
Cuts vs. masks [todo]
Using ragged arrays
Using arrays with missing values
Restructuring data
Zip/unzip and project
Adding fields to records
Renaming records [todo]
Flattening for plots
Padding/clipping for machine learning
Concatenating and interleaving [todo]
Sorting [todo]
Combinatorics
Cartesian and "n choose k" [todo]
Best match between collections [todo]
Using arrays in Numba
Supported features [todo]
Building array output [todo]
Working with CUDA
Specialized behavior
Subclassing Array/Record [todo]
Overriding NumPy functions [todo]
In Numba [todo]
For physics: Lorentz vectors [todo]
Differentiation using JAX
Building Awkward Arrays in C++
User guide
Using arrays in Numba
Using arrays in Numba
#
Supported features [todo]
Building array output [todo]
Working with CUDA
Edit on GitHub
Show Source