ak.local_index#
Defined in awkward.operations.ak_local_index on line 8.
- ak.local_index(array, axis=- 1)#
- Parameters
array – Array-like data (anything
ak.to_layout
recognizes).axis (int) – The dimension at which this operation is applied. The outermost dimension is
0
, followed by1
, etc., and negative values count backward from the innermost:-1
is the innermost dimension,-2
is the next level up, etc.highlevel (bool) – If True, return an
ak.Array
; otherwise, return a low-levelak.contents.Content
subclass.behavior (None or dict) – Custom
ak.behavior
for the output array, if high-level.
For example,
>>> array = ak.Array([
... [[0.0, 1.1, 2.2], []],
... [[3.3, 4.4]],
... [],
... [[5.5], [], [6.6, 7.7, 8.8, 9.9]]])
>>> ak.local_index(array, axis=0)
<Array [0, 1, 2, 3] type='4 * int64'>
>>> ak.local_index(array, axis=1)
<Array [[0, 1], [0], [], [0, 1, 2]] type='4 * var * int64'>
>>> ak.local_index(array, axis=2)
<Array [[[0, 1, 2], []], ..., [[0], ..., [...]]] type='4 * var * var * int64'>
Note that you can make a Pandas-style MultiIndex by calling this function on every axis.
>>> multiindex = ak.zip([ak.local_index(array, i) for i in range(array.ndim)])
>>> multiindex.show()
[[[(0, 0, 0), (0, 0, 1), (0, 0, 2)], []],
[[(1, 0, 0), (1, 0, 1)]],
[],
[[(3, 0, 0)], [], [(3, 2, 0), (3, 2, 1), (3, 2, 2), (3, 2, 3)]]]
>>> ak.flatten(ak.flatten(multiindex)).show()
[(0, 0, 0),
(0, 0, 1),
(0, 0, 2),
(1, 0, 0),
(1, 0, 1),
(3, 0, 0),
(3, 2, 0),
(3, 2, 1),
(3, 2, 2),
(3, 2, 3)]
But if you’re interested in Pandas, you may want to use ak.to_dataframe
directly.
>>> ak.to_dataframe(array)
values
entry subentry subsubentry
0 0 0 0.0
1 1.1
2 2.2
1 0 0 3.3
1 4.4
3 0 0 5.5
2 0 6.6
1 7.7
2 8.8
3 9.9