ak.full_like#
Defined in awkward.operations.ak_full_like on line 10.
- ak.full_like(array, fill_value)#
- Parameters
array – Array-like data (anything
ak.to_layout
recognizes).fill_value – Value to fill the new array with.
dtype (None or NumPy dtype) – Overrides the data type of the result.
highlevel (bool, default is True) – If True, return an
ak.Array
; otherwise, return a low-levelak.contents.Content
subclass.behavior (None or dict) – Custom
ak.behavior
for the output array, if high-level.
This is the equivalent of NumPy’s np.full_like
for Awkward Arrays.
Although it’s possible to produce an array of fill_value
with the
structure of an array
using ak.broadcast_arrays
:
>>> array = ak.Array([[1, 2, 3], [], [4, 5]])
>>> ak.broadcast_arrays(array, 1)
[<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
<Array [[1, 1, 1], [], [1, 1]] type='3 * var * int64'>]
>>> ak.broadcast_arrays(array, 1.0)
[<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
<Array [[1, 1, 1], [], [1, 1]] type='3 * var * float64'>]
Such a technique takes its type from the scalar (1
or 1.0
), rather than
the array. This function gets all types from the array, which might not be
the same in all parts of the structure.
Here is an extreme example:
>>> array = ak.Array([
... [{"x": 0.0, "y": []},
... {"x": 1.1, "y": [1]},
... {"x": 2.2, "y": [1, 2]}],
... [],
... [{"x": 3.3, "y": [1, 2, None, 3]},
... False,
... False,
... True,
... {"x": 4.4, "y": [1, 2, None, 3, 4]}]])
>>> ak.full_like(array, 12.3).show()
[[{x: 12.3, y: []}, {x: 12.3, y: [12]}, {x: 12.3, y: [12, 12]}],
[],
[{x: 12.3, y: [12, 12, None, 12]}, True, ..., True, {x: 12.3, y: [12, ...]}]]
The "x"
values get filled in with 12.3
because they retain their type
(float64
) and the "y"
list items get filled in with 12
because they
retain their type (int64
). Booleans get filled with True because 12.3
is not zero. Missing values remain in the same positions as in the original
array
. (To fill them in, use ak.fill_none
.)
See also ak.zeros_like
and ak.ones_like
.
(There is no equivalent of NumPy’s np.empty_like
because Awkward Arrays
are immutable.)