How to create arrays of records#

In Awkward Array, a “record” is a structure containing a fixed-length set of typed, possibly named fields. This is a “struct” in C or an “object” in Python (though the association of executable methods to record types is looser than the binding of methods to classes in object oriented languages).

All methods in Awkward Array are implemented as “structs of arrays,” rather than arrays of structs, so making and breaking records are inexpensive operations that you can perform frequently in data analysis.

import awkward as ak
import numpy as np

From a list of Python dicts#

Records have a natural representation in JSON and Python as dicts, but only if all dicts in a series have the same set of field names. The ak.Array invokes ak.from_iter() whenever presented with a list (or other non-string, non-dict iterable).

python_dicts = [
    {"x": 1, "y": 1.1, "z": "one"},
    {"x": 2, "y": 2.2, "z": "two"},
    {"x": 3, "y": 3.3, "z": "three"},
    {"x": 4, "y": 4.4, "z": "four"},
    {"x": 5, "y": 5.5, "z": "five"},
]
python_dicts
[{'x': 1, 'y': 1.1, 'z': 'one'},
 {'x': 2, 'y': 2.2, 'z': 'two'},
 {'x': 3, 'y': 3.3, 'z': 'three'},
 {'x': 4, 'y': 4.4, 'z': 'four'},
 {'x': 5, 'y': 5.5, 'z': 'five'}]

It is important that all of the dicts in the series have the same set of field names, since Awkward Array has to identify all of the records as having a single type:

awkward_array = ak.Array(python_dicts)
awkward_array
[{x: 1, y: 1.1, z: 'one'},
 {x: 2, y: 2.2, z: 'two'},
 {x: 3, y: 3.3, z: 'three'},
 {x: 4, y: 4.4, z: 'four'},
 {x: 5, y: 5.5, z: 'five'}]
---------------------------------------------------------
backend: cpu
nbytes: 147 B
type: 5 * {
    x: int64,
    y: float64,
    z: string
}

That is to say, an array of records is not a mapping from one type to another, such as from strings to numbers. The above record has exactly three fields: x, y, and z, and they have fixed types: int64, float64, and string. A mapping could have a variable set of keys, but the value type would have to be uniform.

If you try to mix field types in ak.from_iter() (ultimately from ak.ArrayBuilder), the union of all sets of fields will be assumed, and any that aren’t filled in every item will be presumed “missing.”

array = ak.Array(
    [
        {"a": 1, "b": 1, "c": 1},
        {"b": 2, "c": 2},
        {"c": 3, "d": 3, "e": 3, "f": 3},
        {"c": 4},
    ]
)
array
[{a: 1, b: 1, c: 1, d: None, e: None, f: None},
 {a: None, b: 2, c: 2, d: None, e: None, f: None},
 {a: None, b: None, c: 3, d: 3, e: 3, f: 3},
 {a: None, b: None, c: 4, d: None, e: None, f: None}]
-----------------------------------------------------------------------------------------------------
backend: cpu
nbytes: 240 B
type: 4 * {
    a: ?int64,
    b: ?int64,
    c: int64,
    d: ?int64,
    e: ?int64,
    f: ?int64
}

From a single dict of columns#

If a single dict is passed to ak.Array, it will be interpreted as a set of columns, like Pandas’s DataFrame constructor. This is to provide a familiar interface to Pandas users.

from_columns = ak.Array(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_columns
[{x: 1, y: 1.1, z: 'one'},
 {x: 2, y: 2.2, z: 'two'},
 {x: 3, y: 3.3, z: 'three'},
 {x: 4, y: 4.4, z: 'four'},
 {x: 5, y: 5.5, z: 'five'}]
---------------------------------------------------------
backend: cpu
nbytes: 147 B
type: 5 * {
    x: int64,
    y: float64,
    z: string
}

This is not the same as calling ak.from_iter() on the same input, which could not be a valid ak.Array because a single dict would be an ak.Record.

from_rows = ak.from_iter(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_rows
{x: [1, 2, 3, 4, 5],
 y: [1.1, 2.2, 3.3, 4.4, 5.5],
 z: ['one', 'two', 'three', 'four', 'five']}
-----------------------------------------------------------------------
backend: cpu
nbytes: 195 B
type: {
    x: var * int64,
    y: var * float64,
    z: var * string
}

Using ak.zip#

The ak.zip() function combines columns into an array of records, similar to the Pandas-style constructor described above.

from_columns = ak.zip(
    {
        "x": [1, 2, 3, 4, 5],
        "y": [1.1, 2.2, 3.3, 4.4, 5.5],
        "z": ["one", "two", "three", "four", "five"],
    }
)
from_columns
[{x: 1, y: 1.1, z: 'one'},
 {x: 2, y: 2.2, z: 'two'},
 {x: 3, y: 3.3, z: 'three'},
 {x: 4, y: 4.4, z: 'four'},
 {x: 5, y: 5.5, z: 'five'}]
---------------------------------------------------------
backend: cpu
nbytes: 147 B
type: 5 * {
    x: int64,
    y: float64,
    z: string
}

The difference is that ak.zip() attempts to nested lists deeply, up to a depth_limit.

Given columns with nested lists:

zipped = ak.zip(
    {
        "x": ak.Array([[1, 2, 3], [], [4, 5]]),
        "y": ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]),
    }
)
zipped
[[{x: 1, y: 1.1}, {x: 2, y: 2.2}, {x: 3, y: 3.3}],
 [],
 [{x: 4, y: 4.4}, {x: 5, y: 5.5}]]
--------------------------------------------------
backend: cpu
nbytes: 112 B
type: 3 * var * {
    x: int64,
    y: float64
}

By contrast, the same input to ak.Array’s Pandas-style constructor keeps nested lists separate.

not_zipped = ak.Array(
    {
        "x": ak.Array([[1, 2, 3], [], [4, 5]]),
        "y": ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]),
    }
)
not_zipped
[{x: [1, 2, 3], y: [1.1, 2.2, 3.3]},
 {x: [], y: []},
 {x: [4, 5], y: [4.4, 5.5]}]
------------------------------------------------------
backend: cpu
nbytes: 144 B
type: 3 * {
    x: var * int64,
    y: var * float64
}

The difference can be seen in a comparison of their types:

zipped.type.show()
not_zipped.type.show()
3 * var * {
    x: int64,
    y: float64
}
3 * {
    x: var * int64,
    y: var * float64
}

Also, ak.zip() can build records without field names, also known as “tuples.”

tuples = ak.zip(
    (ak.Array([[1, 2, 3], [], [4, 5]]), ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]))
)
tuples
[[(1, 1.1), (2, 2.2), (3, 3.3)],
 [],
 [(4, 4.4), (5, 5.5)]]
------------------------------------------
backend: cpu
nbytes: 112 B
type: 3 * var * (
    int64,
    float64
)

Functions that return lists of pairs, such as ak.cartesian() and ak.combinations(), also use the tuple type.

one = ak.Array([[1, 2, 3], [], [4, 5], [6]])
two = ak.Array([["a", "b"], ["c"], ["d"], ["e", "f"]])

ak.cartesian((one, two))
[[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')],
 [],
 [(4, 'd'), (5, 'd')],
 [(6, 'e'), (6, 'f')]]
--------------------------------------------------------------
backend: cpu
nbytes: 286 B
type: 4 * var * (
    int64,
    string
)
ak.combinations(one, 2)
[[(1, 2), (1, 3), (2, 3)],
 [],
 [(4, 5)],
 []]
----------------------------------------
backend: cpu
nbytes: 104 B
type: 4 * var * (
    int64,
    int64
)

Record names#

In addition to optional field names, record types can also have names.

ak.Array(
    [
        {"x": 1, "y": 1.1},
        {"x": 2, "y": 2.2},
        {"x": 3, "y": 3.3},
        {"x": 4, "y": 4.4},
        {"x": 5, "y": 5.5},
    ],
    with_name="XYZ",
)
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3},
 {x: 4, y: 4.4},
 {x: 5, y: 5.5}]
---------------------------------------------
backend: cpu
nbytes: 80 B
type: 5 * XYZ[
    x: int64,
    y: float64
]
ak.zip(
    (ak.Array([[1, 2, 3], [], [4, 5]]), ak.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]])),
    with_name="AB",
)
[[(1, 1.1), (2, 2.2), (3, 3.3)],
 [],
 [(4, 4.4), (5, 5.5)]]
--------------------------------------------
backend: cpu
nbytes: 112 B
type: 3 * var * AB[
    int64,
    float64
]
ak.cartesian(
    {"L": ak.Array([1, 2, 3]), "R": ak.Array(["a", "b"])}, with_name="LeftRight", axis=0
)
[{L: 1, R: 'a'},
 {L: 1, R: 'b'},
 {L: 2, R: 'a'},
 {L: 2, R: 'b'},
 {L: 3, R: 'a'},
 {L: 3, R: 'b'}]
--------------------------------------------------
backend: cpu
nbytes: 146 B
type: 6 * LeftRight[
    L: int64,
    R: string
]

Names are for giving records specialized behavior through the ak.behavior registry (see the ak.behavior reference documentation for details). These are like attaching methods to a class in the sense that all records with a particular name can be given Python properties and methods.

class XYZRecord(ak.Record):
    def __repr__(self):
        return f"(X={self.x}:Y={self.y})"


class XYZArray(ak.Array):
    def diff(self):
        return abs(self.x - self.y)


ak.behavior["XYZ"] = XYZRecord
ak.behavior["*", "XYZ"] = XYZArray
ak.behavior["__typestr__", "XYZ"] = "XYZ"
ak.behavior[np.sqrt, "XYZ"] = lambda xyz: np.sqrt(xyz.x)

array = ak.Array(
    [
        {"x": 1, "y": 1.1},
        {"x": 2, "y": 2.2},
        {"x": 3, "y": 3.3},
        {"x": 4, "y": 4.4},
        {"x": 5, "y": 5.5},
    ],
    with_name="XYZ",
)
array
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3},
 {x: 4, y: 4.4},
 {x: 5, y: 5.5}]
----------------
backend: cpu
nbytes: 80 B
type: 5 * XYZ
array.diff()
[0.1,
 0.2,
 0.3,
 0.4,
 0.5]
-----------------
backend: cpu
nbytes: 40 B
type: 5 * float64
array[0]
{x: 1,
 y: 1.1}
------------
backend: cpu
nbytes: 80 B
type: XYZ
np.sqrt(array)
[1,
 1.41,
 1.73,
 2,
 2.24]
-----------------
backend: cpu
nbytes: 40 B
type: 5 * float64

With ArrayBuilder#

ak.ArrayBuilder is described in more detail in this tutorial, but you can also construct arrays of records using the begin_record/end_record methods or the record context manager.

(This is what ak.from_iter() uses internally to accumulate records.)

builder = ak.ArrayBuilder()

builder.begin_record()
builder.field("x").append(1)
builder.field("y").append(1.1)
builder.end_record()

builder.begin_record()
builder.field("x").append(2)
builder.field("y").append(2.2)
builder.end_record()

builder.begin_record()
builder.field("x").append(3)
builder.field("y").append(3.3)
builder.end_record()

array = builder.snapshot()
array
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3}]
------------------------------------------
backend: cpu
nbytes: 48 B
type: 3 * {
    x: int64,
    y: float64
}
builder = ak.ArrayBuilder()

with builder.record():
    builder.field("x").append(1)
    builder.field("y").append(1.1)

with builder.record():
    builder.field("x").append(2)
    builder.field("y").append(2.2)

with builder.record():
    builder.field("x").append(3)
    builder.field("y").append(3.3)

array = builder.snapshot()
array
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3}]
------------------------------------------
backend: cpu
nbytes: 48 B
type: 3 * {
    x: int64,
    y: float64
}

The begin_record method and record context manager can take a name, which allows you to name your records on the spot.

builder = ak.ArrayBuilder()

for i in range(3):
    with builder.record("XY"):
        builder.field("x").append(i)
        builder.field("y").append(i * 1.1)

array = builder.snapshot()
array
[{x: 0, y: 0},
 {x: 1, y: 1.1},
 {x: 2, y: 2.2}]
--------------------------------------------
backend: cpu
nbytes: 48 B
type: 3 * XY[
    x: int64,
    y: float64
]

Record names also let you decide between two ways of dealing with changing sets of fields among the input records.

  • The default/generic way: all records at a given level are taken to belong to the same type and some instances of that type are missing fields.

  • Named records: different names mean different types, whether they have the same fields or not. Different record names at the same level result in a union type.

Here is an illustration of that difference.

def fill_A(builder, use_name):
    with builder.record("A" if use_name else None):
        builder.field("x").append(len(builder))
        builder.field("y").append(len(builder) * 1.1)


def fill_B(builder, use_name):
    with builder.record("B" if use_name else None):
        builder.field("y").append(len(builder) * 1.1)
        builder.field("z").append(str(len(builder)))

Without names:

builder = ak.ArrayBuilder()

fill_A(builder, use_name=False)
fill_A(builder, use_name=False)

fill_B(builder, use_name=False)
fill_B(builder, use_name=False)

fill_A(builder, use_name=False)

without_names = builder.snapshot()
without_names
[{x: 0, y: 0, z: None},
 {x: 1, y: 1.1, z: None},
 {x: None, y: 2.2, z: '2'},
 {x: None, y: 3.3, z: '3'},
 {x: 4, y: 4.4, z: None}]
-----------------------------------------------------------
backend: cpu
nbytes: 170 B
type: 5 * {
    x: ?int64,
    y: float64,
    z: ?string
}

With names:

builder = ak.ArrayBuilder()

fill_A(builder, use_name=True)
fill_A(builder, use_name=True)

fill_B(builder, use_name=True)
fill_B(builder, use_name=True)

fill_A(builder, use_name=True)

with_names = builder.snapshot()
with_names
[{x: 0, y: 0},
 {x: 1, y: 1.1},
 {y: 2.2, z: '2'},
 {y: 3.3, z: '3'},
 {x: 4, y: 4.4}]
------------------------------------------------------------------------------------------------------------------------
backend: cpu
nbytes: 135 B
type: 5 * union[
    A[
        x: int64,
        y: float64
    ],
    B[
        y: float64,
        z: string
    ]
]

The difference can be seen in the type: without_names has only one record type, but the x and z fields are optional, and with_names has a union of two record types, neither of which have optional fields.

without_names.type.show()
5 * {
    x: ?int64,
    y: float64,
    z: ?string
}
with_names.type.show()
5 * union[
    A[
        x: int64,
        y: float64
    ],
    B[
        y: float64,
        z: string
    ]
]

In Numba#

Functions that Numba Just-In-Time (JIT) compiles can use ak.ArrayBuilder to accumulate records or columns can be accumulated in the compiled part and later combined with ak.zip(). Combining columns outside of a JIT-compiled function is generally faster.

(At this time, Numba can’t use context managers, the with statement, in fully compiled code. ak.ArrayBuilder can’t be constructed or converted to an array using snapshot inside a JIT-compiled function, but can be outside the compiled context. Similarly, ak.* functions like ak.zip() can’t be called inside a JIT-compiled function, but can be outside.)

import numba as nb
@nb.jit
def append_record(builder, i):
    builder.begin_record()
    builder.field("x").append(i)
    builder.field("y").append(i * 1.1)
    builder.end_record()


@nb.jit
def example(builder):
    append_record(builder, 1)
    append_record(builder, 2)
    append_record(builder, 3)
    return builder


builder = example(ak.ArrayBuilder())

array = builder.snapshot()
array
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3}]
------------------------------------------
backend: cpu
nbytes: 48 B
type: 3 * {
    x: int64,
    y: float64
}
@nb.jit
def faster_example():
    x = np.empty(3, np.int64)
    y = np.empty(3, np.float64)
    x[0] = 1
    y[0] = 1.1
    x[1] = 2
    y[1] = 2.2
    x[2] = 3
    y[2] = 3.3
    return x, y


array = ak.zip(dict(zip(["x", "y"], faster_example())))
array
[{x: 1, y: 1.1},
 {x: 2, y: 2.2},
 {x: 3, y: 3.3}]
------------------------------------------
backend: cpu
nbytes: 48 B
type: 3 * {
    x: int64,
    y: float64
}

Combining columns into arrays is a metadata-only operation, which does not scale with the size of the dataset. The second example is faster because it only requires Numba to fill NumPy arrays, which it’s designed for, without involving the machinery of ak.ArrayBuilder to identify types at runtime.