ak.enforce_type#

Defined in awkward.operations.ak_enforce_type on line 23.

ak.enforce_type(array, type, *, highlevel=True, behavior=None, attrs=None)#
Parameters
  • array – Array-like data (anything ak.to_layout recognizes).

  • type (ak.types.Type, or str) – The type that array will be enforced to.

  • highlevel (bool) – If True, return an ak.Array; otherwise, return a low-level ak.contents.Content subclass.

  • behavior (None or dict) – Custom ak.behavior for the output array, if high-level.

  • attrs (None or dict) – Custom attributes for the output array, if high-level.

Returns an array whose structure is modified to match the given type.

In addition to preserving the existing type and/or changing parameters,

  • ak.types.OptionType can be added

    >>> a = ak.Array([1, 2, 3])
    >>> a.type.show()
    3 * int64
    >>> b = ak.enforce_type(a, "?int64")
    >>> b.type.show()
    3 * ?int64
    

    or removed (if there are no missing values)

    >>> a = ak.Array([1, 2, 3, None])
    >>> b = a[:-1]
    >>> b.type.show()
    3 * ?int64
    >>> c = ak.enforce_type(b, "int64")
    >>> c.type.show()
    3 * int64
    
  • ak.types.UnionType can

    • grow to include new variant types,

    >>> a = ak.Array([{'x': 1}, 2.0])
    >>> a.type.show()
    2 * union[
        {
            x: int64
        },
        float64
    ]
    >>> b = ak.enforce_type(a, "union[{x: int64}, float64, string]")
    >>> b.type.show()
    2 * union[
    {
        x: float32
    },
        float64,
        string
    ]
    
    • convert to a single type,

    >>> a = ak.concatenate([
    ...   ak.Array([{'x': 1}, {'x': 2}]),
    ...   ak.Array([{'x': True, "y": None}, {'x': False, "y": None}])
    ... ])
    >>> a.type.show()
    4 * union[
        {
            x: int64
        },
        {
            x: bool,
            y: ?unknown
        }
    ]
    >>> b = ak.enforce_type(a, "{x: float64}")
    >>> b.type.show()
    4 * {
        x: float64
    }
    
    • project to a single type (if conversion to a single type is not possible, and the union contains no values for this type),

    >>> a = ak.concatenate([
    ...   ak.Array([{'x': 1}, {'x': 2}]),
    ...   ak.Array([{'x': "yes", "y": None}, {'x': "no", "y": None}])
    ... ])
    >>> b = a[:2]
    >>> b.type.show()
    2 * union[
        {
            x: int64
        },
        {
            x: string,
            y: ?unknown
        }
    ]
    >>> c = ak.enforce_type(b, "{x: int64}")
    >>> c.type.show()
    2 * {
        x: int64
    }
    
    • change type in a single variant.

    >>> a = ak.Array([{'x': 1}, 2.0])
    >>> a.type.show()
    2 * union[
        {
            x: int64
        },
        float64
    ]
    >>> b = ak.enforce_type(a, "union[{x: float32}, float64]")
    >>> b.type.show()
    2 * union[
    {
        x: float32
    },
        float64
    ]
    

    Due to these rules, changes to more than one variant of a union must be performed with multiple calls to ak.enforce_type

  • ak.types.RecordType can

    • grow to include new optional fields / slots,

    >>> a = ak.Array([{'x': 1}])
    >>> a.type.show()
    1 * {
        x: int64
    }
    >>> b = ak.enforce_type(a, "{x: int64, y: ?float32}")
    >>> b.type.show()
    1 * {
        x: int64,
        y: ?float32
    }
    
    • shrink to drop existing fields / slots.

    >>> a = ak.Array([{'x': 1, 'y': 1j+3}])
    >>> a.type.show()
    1 * {
        x: int64,
        y: complex128
    }
    >>> b = ak.enforce_type(a, "{x: int64}")
    >>> b.type.show()
    1 * {
        x: int64
    }
    

    A ak.types.RecordType may only be converted to another ak.types.RecordType if it is of the same flavour, i.e. tuples can be converted to tuples, or records to records. Where a new field/slot is added to a ak.types.RecordType, it must be an ak.types.OptionType. For tuples, slots may only be added to the end of the tuple

  • ak.types.RegularType can convert to a ak.types.ListType

    >>> a = ak.to_regular([[1, 2, 3], [4, 5, 6]])
    >>> a.type.show()
    2 * 3 * int64
    >>> b = ak.enforce_type(a, "var * int64")
    >>> b.type.show()
    2 * var * int64
    
  • ak.types.ListType can convert to a ak.types.RegularType

    >>> a = ak.Array([[1, 2, 3], [4, 5, 6]])
    >>> a.type.show()
    2 * var * int64
    >>> b = ak.enforce_type(a, "3 * int64")
    >>> b.type.show()
    2 * 3 * int64
    
  • ak.types.NumpyType can change primitive

    >>> a = ak.Array([1, 2, 3])
    >>> a.type.show()
    3 * int64
    >>> b = ak.enforce_type(a, "float32")
    >>> b.type.show()
    3 * float32
    
  • ak.types.UnknownType can be converted to any other type

    >>> a = ak.Array([])
    >>> a.type.show()
    0 * unknown
    >>> b = ak.enforce_type(a, "float32")
    >>> b.type.show()
    0 * float32
    

    and can be converted to from any other type.

    >>> a = ak.Array([1, 2, 3])
    >>> a.type.show()
    3 * int64
    >>> b = ak.enforce_type(a, "?unknown")
    >>> b.type.show()
    3 * ?unknown
    

The conversion rules outlined above are not data-dependent; the appropriate rule is chosen from the layout and the given type value. If the conversion is not possible given the layout data, e.g. a conversion from an irregular list to a regular type, it will fail.