ak.to_rdataframe ---------------- .. py:module: ak.to_rdataframe Defined in `awkward.operations.ak_to_rdataframe `__ on `line 13 `__. .. py:function:: ak.to_rdataframe(arrays, *, flatlist_as_rvec=True) :param arrays: Each value in this dict can be any array-like data that :py:obj:`ak.to_layout` recognizes, but they must all have the same length. :type arrays: dict of arrays :param flatlist_as_rvec: If True, lists of primitive types (numbers, booleans, etc.) are presented to C++ as ``ROOT::RVec``, but all other types use Awkward Array's custom C++ classes. If False, even these "flat" lists use Awkward Array's custom C++ classes. :type flatlist_as_rvec: bool Converts an Awkward Array into ROOT Data Frame columns: .. code-block:: python >>> x = ak.Array([ ... [1.1, 2.2, 3.3], ... [], ... [4.4, 5.5], ... ]) >>> y = ak.Array([ ... {"a": 1.1, "b": [1]}, ... {"a": 2.2, "b": [2, 1]}, ... {"a": 3.3, "b": [3, 2, 1]}, ... ]) >>> rdf = ak.to_rdataframe({"x": x, "y": y}) >>> rdf.Define("z", "ROOT::VecOps::Sum(x) + y.a() + y.b()[0]").AsNumpy(["z"]) {'z': ndarray([ 8.7, 4.2, 16.2])} >>> ak.sum(x, axis=-1) + y.a + y.b[:, 0] See also :py:obj:`ak.from_rdataframe`.