ak.to_backend ------------- .. py:module: ak.to_backend Defined in `awkward.operations.ak_to_backend `__ on `line 14 `__. .. py:function:: ak.to_backend(array, backend, *, highlevel=True, behavior=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param backend: If ``"cpu"``, the array structure is recursively copied (if need be) to main memory for use with the default Numpy backend; if ``"cuda"``, the structure is copied to the GPU(s) for use with CuPy. If ``"jax"``, the structure is copied to the CPU for use with JAX. :type backend: ``"cpu"``, ``"cuda"``, or ``"jax"`` :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict Converts an array from ``"cpu"``, ``"cuda"``, ``"jax"`` kernels to ``"cpu"``, ``"cuda"``, ``"jax"``, or ``"typetracer"`` . Any components that are already in the desired backend are viewed, rather than copied, so this operation can be an inexpensive way to ensure that an array is ready for a particular library. To use ``"cuda"``, the ``cupy`` package must be installed, either with .. code-block:: python pip install cupy or .. code-block:: python conda install -c conda-forge cupy To use ``"jax"``, the ``jax`` package must be installed, either with .. code-block:: python pip install jax or .. code-block:: python conda install -c conda-forge jax See :py:obj:`ak.kernels`.