ak.cartesian ------------ .. py:module: ak.cartesian Defined in `awkward.operations.ak_cartesian `__ on `line 20 `__. .. py:function:: ak.cartesian(arrays, axis=1, *, nested=None, parameters=None, with_name=None, highlevel=True, behavior=None) :param arrays: Each value in this dict or iterable can be any array-like data that :py:obj:`ak.to_layout` recognizes. :type arrays: dict or iterable of arrays :param axis: The dimension at which this operation is applied. The outermost dimension is ``0``, followed by ``1``, etc., and negative values count backward from the innermost: ``-1`` is the innermost dimension, ``-2`` is the next level up, etc. :type axis: int :param nested: If None or False, all combinations of elements from the ``arrays`` are produced at the same level of nesting; if True, they are grouped in nested lists by combinations that share a common item from each of the ``arrays``; if an iterable of str or int, group common items for a chosen set of keys from the ``array`` dict or integer slots of the ``array`` iterable. :type nested: None, True, False, or iterable of str or int :param parameters: Parameters for the new :py:obj:`ak.contents.RecordArray` node that is created by this operation. :type parameters: None or dict :param with_name: Assigns a ``"__record__"`` name to the new :py:obj:`ak.contents.RecordArray` node that is created by this operation (overriding ``parameters``, if necessary). :type with_name: None or str :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict Computes a Cartesian product (i.e. cross product) of data from a set of ``arrays``. This operation creates records (if ``arrays`` is a dict) or tuples (if ``arrays`` is another kind of iterable) that hold the combinations of elements, and it can introduce new levels of nesting. As a simple example with ``axis=0``, the Cartesian product of .. code-block:: python >>> one = ak.Array([1, 2, 3]) >>> two = ak.Array(["a", "b"]) is .. code-block:: python >>> ak.cartesian([one, two], axis=0).show() [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')] With nesting, a new level of nested lists is created to group combinations that share the same element from ``one`` into the same list. .. code-block:: python >>> ak.cartesian([one, two], axis=0, nested=True).show() [[(1, 'a'), (1, 'b')], [(2, 'a'), (2, 'b')], [(3, 'a'), (3, 'b')]] The primary purpose of this function, however, is to compute a different Cartesian product for each element of an array: in other words, ``axis=1``. The following arrays each have four elements. .. code-block:: python >>> one = ak.Array([[1, 2, 3], [], [4, 5], [6]]) >>> two = ak.Array([["a", "b"], ["c"], ["d"], ["e", "f"]]) The default ``axis=1`` produces 6 pairs from the Cartesian product of ``[1, 2, 3]`` and ``["a", "b"]``, 0 pairs from ``[]`` and ``["c"]``, 1 pair from ``[4, 5]`` and ``["d"]``, and 1 pair from ``[6]`` and ``["e", "f"]``. .. code-block:: python >>> ak.cartesian([one, two]).show() [[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')], [], [(4, 'd'), (5, 'd')], [(6, 'e'), (6, 'f')]] The nesting depth is the same as the original arrays; with ``nested=True``, the nesting depth is increased by 1 and tuples are grouped by their first element. .. code-block:: python >>> ak.cartesian([one, two], nested=True).show() [[[(1, 'a'), (1, 'b')], [(2, 'a'), (2, ...)], [(3, 'a'), (3, 'b')]], [], [[(4, 'd')], [(5, 'd')]], [[(6, 'e'), (6, 'f')]]] These tuples are :py:obj:`ak.contents.RecordArray` nodes with unnamed fields. To name the fields, we can pass ``one`` and ``two`` in a dict, rather than a list. .. code-block:: python >>> ak.cartesian({"x": one, "y": two}).show() [[{x: 1, y: 'a'}, {x: 1, y: 'b'}, {...}, ..., {x: 3, y: 'a'}, {x: 3, y: 'b'}], [], [{x: 4, y: 'd'}, {x: 5, y: 'd'}], [{x: 6, y: 'e'}, {x: 6, y: 'f'}]] With more than two elements in the Cartesian product, ``nested`` can specify which are grouped and which are not. For example, .. code-block:: python >>> one = ak.Array([1, 2, 3, 4]) >>> two = ak.Array([1.1, 2.2, 3.3]) >>> three = ak.Array(["a", "b"]) can be left entirely ungrouped: .. code-block:: python >>> ak.cartesian([one, two, three], axis=0).show() [(1, 1.1, 'a'), (1, 1.1, 'b'), (1, 2.2, 'a'), (1, 2.2, 'b'), (1, 3.3, 'a'), (1, 3.3, 'b'), (2, 1.1, 'a'), (2, 1.1, 'b'), (2, 2.2, 'a'), (2, 2.2, 'b'), ..., (3, 2.2, 'b'), (3, 3.3, 'a'), (3, 3.3, 'b'), (4, 1.1, 'a'), (4, 1.1, 'b'), (4, 2.2, 'a'), (4, 2.2, 'b'), (4, 3.3, 'a'), (4, 3.3, 'b')] can be grouped by ``one`` (adding 1 more dimension): .. code-block:: python >>> ak.cartesian([one, two, three], axis=0, nested=[0]).show() [[(1, 1.1, 'a'), (1, 1.1, 'b'), (1, 2.2, 'a')], [(1, 2.2, 'b'), (1, 3.3, 'a'), (1, 3.3, 'b')], [(2, 1.1, 'a'), (2, 1.1, 'b'), (2, 2.2, 'a')], [(2, 2.2, 'b'), (2, 3.3, 'a'), (2, 3.3, 'b')], [(3, 1.1, 'a'), (3, 1.1, 'b'), (3, 2.2, 'a')], [(3, 2.2, 'b'), (3, 3.3, 'a'), (3, 3.3, 'b')], [(4, 1.1, 'a'), (4, 1.1, 'b'), (4, 2.2, 'a')], [(4, 2.2, 'b'), (4, 3.3, 'a'), (4, 3.3, 'b')]] can be grouped by ``one`` and ``two`` (adding 2 more dimensions): .. code-block:: python >>> ak.cartesian([one, two, three], axis=0, nested=[0, 1]).show() [[[(1, 1.1, 'a'), (1, 1.1, 'b')], [...], [(1, 3.3, 'a'), (1, 3.3, ...)]], [[(2, 1.1, 'a'), (2, 1.1, 'b')], [...], [(2, 3.3, 'a'), (2, 3.3, ...)]], [[(3, 1.1, 'a'), (3, 1.1, 'b')], [...], [(3, 3.3, 'a'), (3, 3.3, ...)]], [[(4, 1.1, 'a'), (4, 1.1, 'b')], [...], [(4, 3.3, 'a'), (4, 3.3, ...)]]] or grouped by unique ``one``-``two`` pairs (adding 1 more dimension): .. code-block:: python >>> ak.cartesian([one, two, three], axis=0, nested=[1]).show() [[(1, 1.1, 'a'), (1, 1.1, 'b')], [(1, 2.2, 'a'), (1, 2.2, 'b')], [(1, 3.3, 'a'), (1, 3.3, 'b')], [(2, 1.1, 'a'), (2, 1.1, 'b')], [(2, 2.2, 'a'), (2, 2.2, 'b')], [(2, 3.3, 'a'), (2, 3.3, 'b')], [(3, 1.1, 'a'), (3, 1.1, 'b')], [(3, 2.2, 'a'), (3, 2.2, 'b')], [(3, 3.3, 'a'), (3, 3.3, 'b')], [(4, 1.1, 'a'), (4, 1.1, 'b')], [(4, 2.2, 'a'), (4, 2.2, 'b')], [(4, 3.3, 'a'), (4, 3.3, 'b')]] The order of the output is fixed: it is always lexicographical in the order that the ``arrays`` are written. To emulate an SQL or Pandas "group by" operation, put the keys that you wish to group by *first* and use ``nested=[0]`` or ``nested=[n]`` to group by unique n-tuples. If necessary, record keys can later be reordered with a list of strings in :py:obj:`ak.Array.__getitem__`. To get list index positions in the tuples/records, rather than data from the original ``arrays``, use :py:obj:`ak.argcartesian` instead of :py:obj:`ak.cartesian`. The :py:obj:`ak.argcartesian` form can be particularly useful as nested indexing in :py:obj:`ak.Array.__getitem__`.