ak.pad_none ----------- .. py:module: ak.pad_none Defined in `awkward.operations.ak_pad_none `__ on `line 13 `__. .. py:function:: ak.pad_none(array, target, axis=1, *, clip=False, highlevel=True, behavior=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param target: The intended length of the lists. If ``clip=True``, the output lists will have exactly this length; otherwise, they will have *at least* this length. :type target: int :param axis: The dimension at which this operation is applied. The outermost dimension is ``0``, followed by ``1``, etc., and negative values count backward from the innermost: ``-1`` is the innermost dimension, ``-2`` is the next level up, etc. :type axis: int :param clip: If True, the output lists will have regular lengths (:py:obj:`ak.types.RegularType`) of exactly ``target``; otherwise the output lists will have in-principle variable lengths (:py:obj:`ak.types.ListType`) of at least ``target``. :type clip: bool :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict Increase the lengths of lists to a target length by adding None values. Consider the following .. code-block:: python >>> array = ak.Array([[[1.1, 2.2, 3.3], ... [], ... [4.4, 5.5], ... [6.6]], ... [], ... [[7.7], ... [8.8, 9.9] ... ]]) At ``axis=0``, this operation pads the whole array, adding None at the outermost level: .. code-block:: python >>> ak.pad_none(array, 5, axis=0).show() [[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]], [], [[7.7], [8.8, 9.9]], None, None] At ``axis=1``, this operation pads the first nested level: .. code-block:: python >>> ak.pad_none(array, 3, axis=1).show() [[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]], [None, None, None], [[7.7], [8.8, 9.9], None]] And so on for higher values of ``axis``: .. code-block:: python >>> ak.pad_none(array, 2, axis=2).show() [[[1.1, 2.2, 3.3], [None, None], [4.4, 5.5], [6.6, None]], [], [[7.7, None], [8.8, 9.9]]] Note that the ``clip`` parameter not only determines whether the lengths are at least ``target`` or exactly ``target``, it also determines the type of the output: * ``clip=True`` returns regular lists (:py:obj:`ak.types.RegularType`), and * ``clip=False`` returns in-principle variable lengths (:py:obj:`ak.types.ListType`). The in-principle variable-length lists might, in fact, all have the same length, but the type difference is significant, for instance in broadcasting rules (see :py:obj:`ak.broadcast_arrays`). The difference between .. code-block:: python >>> ak.pad_none(array, 2, axis=2) and .. code-block:: python >>> ak.pad_none(array, 2, axis=2, clip=True) is not just in the length of ``[1.1, 2.2, 3.3]`` vs ``[1.1, 2.2]``, but also in the distinction between the following types. .. code-block:: python >>> ak.pad_none(array, 2, axis=2).type.show() 3 * var * var * ?float64 >>> ak.pad_none(array, 2, axis=2, clip=True).type.show() 3 * var * 2 * ?float64