ak.flatten ---------- .. py:module: ak.flatten Defined in `awkward.operations.ak_flatten `__ on `line 13 `__. .. py:function:: ak.flatten(array, axis=1, *, highlevel=True, behavior=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param axis: If None, the operation flattens all levels of nesting, returning a 1-dimensional array. Otherwise, it flattens at a specified depth. The outermost dimension is ``0``, followed by ``1``, etc., and negative values count backward from the innermost: ``-1`` is the innermost dimension, ``-2`` is the next level up, etc. :type axis: None or int :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict Returns an array with one level of nesting removed by erasing the boundaries between consecutive lists. Since this operates on a level of nesting, ``axis=0`` is a special case that only removes values at the top level that are equal to None. Consider the following. .. code-block:: python >>> array = ak.Array([[[1.1, 2.2, 3.3], ... [], ... [4.4, 5.5], ... [6.6]], ... [], ... [[7.7], ... [8.8, 9.9] ... ]]) At ``axis=1``, the outer lists (length 4, length 0, length 2) become a single list (of length 6). .. code-block:: python >>> ak.flatten(array, axis=1).show() [[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6], [7.7], [8.8, 9.9]] At ``axis=2``, the inner lists (lengths 3, 0, 2, 1, 1, and 2) become three lists (of lengths 6, 0, and 3). .. code-block:: python >>> ak.flatten(array, axis=2).show() [[1.1, 2.2, 3.3, 4.4, 5.5, 6.6], [], [7.7, 8.8, 9.9]] There's also an option to completely flatten the array with ``axis=None``. This is useful for passing the data to a function that doesn't care about nested structure, such as a plotting routine. .. code-block:: python >>> ak.flatten(array, axis=None).show() [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9] Missing values are eliminated by flattening: there is no distinction between an empty list and a value of None at the level of flattening. .. code-block:: python >>> array = ak.Array([[1.1, 2.2, 3.3], None, [4.4], [], [5.5]]) >>> ak.flatten(array, axis=1) As a consequence, flattening at ``axis=0`` does only one thing: it removes None values from the top level. .. code-block:: python >>> ak.flatten(array, axis=0) As a technical detail, the flattening operation can be trivial in a common case, :py:obj:`ak.contents.ListOffsetArray` in which the first ``offset`` is ``0``. In that case, the flattened data is simply the array node's ``content``. .. code-block:: python >>> array = ak.Array([[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]) >>> array.layout [ 0 3 3 5 6 10] [0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9] >>> ak.flatten(array).layout [0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9] >>> array.layout.content [0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9] However, it is important to keep in mind that this is a special case: :py:obj:`ak.flatten` and ``content`` are not interchangeable! .. code-block:: python >>> array = ak.Array( ... ak.contents.ListArray( ... ak.index.Index64(np.array([ 9, 100, 5, 8, 1])), ... ak.index.Index64(np.array([12, 100, 7, 9, 5])), ... ak.contents.NumpyArray( ... np.array([999, 6.6, 7.7, 8.8, 9.9, 3.3, 4.4, 999, 5.5, 0., 1.1, 2.2, 999]) ... ), ... ) ... ) >>> array.show() [[0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]] >>> ak.flatten(array).show() [0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9] >>> ak.Array(array.layout.content).show() [999, 6.6, 7.7, 8.8, 9.9, 3.3, 4.4, 999, 5.5, 0, 1.1, 2.2, 999]