ak.type ------- .. py:module: ak.type Defined in `awkward.operations.ak_type `__ on `line 15 `__. .. py:function:: ak.type(array, *, behavior=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param behavior: Custom :py:obj:`ak.behavior` for the output type, if high-level. :type behavior: None or dict The high-level type of an ``array`` (many types supported, including all Awkward Arrays and Records) as :py:obj:`ak.types.Type` objects. The high-level type ignores layout differences like :py:obj:`ak.contents.ListArray` versus :py:obj:`ak.contents.ListOffsetArray`, but not differences like "regular-sized lists" (i.e. :py:obj:`ak.contents.RegularArray`) versus "variable-sized lists" (i.e. :py:obj:`ak.contents.ListArray` and similar). Types are rendered as `Datashape `__ strings, which makes the same distinctions. For example, .. code-block:: python >>> array = ak.Array([[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [2, 2]}], ... [], ... [{"x": 3.3, "y": [3, 3, 3]}]]) has type .. code-block:: python >>> ak.type(array).show() 3 * var * { x: float64, y: var * int64 } but .. code-block:: python >>> array = ak.Array(np.arange(2*3*5).reshape(2, 3, 5)) has type .. code-block:: python >>> ak.type(array).show() 2 * 3 * 5 * int64 Some cases, like heterogeneous data, require `extensions beyond the Datashape specification `__. For example, .. code-block:: python >>> array = ak.Array([1, "two", [3, 3, 3]]) has type .. code-block:: python >>> ak.type(array).show() 3 * union[ int64, string, var * int64 ] but "union" is not a Datashape type-constructor. (Its syntax is similar to existing type-constructors, so it's a plausible addition to the language.)