ak.to_parquet ------------- .. py:module: ak.to_parquet Defined in `awkward.operations.ak_to_parquet `__ on `line 12 `__. .. py:function:: ak.to_parquet(array, destination, *, list_to32=False, string_to32=True, bytestring_to32=True, emptyarray_to=None, categorical_as_dictionary=False, extensionarray=True, count_nulls=True, compression='zstd', compression_level=None, row_group_size=64 * 1024 * 1024, data_page_size=None, parquet_flavor=None, parquet_version='2.4', parquet_page_version='1.0', parquet_metadata_statistics=True, parquet_dictionary_encoding=False, parquet_byte_stream_split=False, parquet_coerce_timestamps=None, parquet_old_int96_timestamps=None, parquet_compliant_nested=False, parquet_extra_options=None, storage_options=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param destination: Name of the output file, file path, or remote URL passed to `fsspec.core.url_to_fs `__ for remote writing. :type destination: str :param list_to32: If True, convert Awkward lists into 32-bit Arrow lists if they're small enough, even if it means an extra conversion. Otherwise, signed 32-bit :py:obj:`ak.types.ListType` maps to Arrow ``ListType``, signed 64-bit :py:obj:`ak.types.ListType` maps to Arrow ``LargeListType``, and unsigned 32-bit :py:obj:`ak.types.ListType` picks whichever Arrow type its values fit into. :type list_to32: bool :param string_to32: Same as the above for Arrow ``string`` and ``large_string``. :type string_to32: bool :param bytestring_to32: Same as the above for Arrow ``binary`` and ``large_binary``. :type bytestring_to32: bool :param emptyarray_to: If None, :py:obj:`ak.types.UnknownType` maps to Arrow's null type; otherwise, it is converted a given numeric dtype. :type emptyarray_to: None or dtype :param categorical_as_dictionary: If True, :py:obj:`ak.contents.IndexedArray` and :py:obj:`ak.contents.IndexedOptionArray` labeled with ``__array__ = "categorical"`` are mapped to Arrow ``DictionaryArray``; otherwise, the projection is evaluated before conversion (always the case without ``__array__ = "categorical"``). :type categorical_as_dictionary: bool :param extensionarray: If True, this function returns extended Arrow arrays (at all levels of nesting), which preserve metadata so that Awkward → Arrow → Awkward preserves the array's :py:obj:`ak.types.Type` (though not the :py:obj:`ak.forms.Form`). If False, this function returns generic Arrow arrays that might be needed for third-party tools that don't recognize Arrow's extensions. Even with ``extensionarray=False``, the values produced by Arrow's ``to_pylist`` method are the same as the values produced by Awkward's :py:obj:`ak.to_list`. :type extensionarray: bool :param count_nulls: If True, count the number of missing values at each level and include these in the resulting Arrow array, which makes some downstream applications faster. If False, skip the up-front cost of counting them. :type count_nulls: bool :param compression: Compression algorithm name, passed to `pyarrow.parquet.ParquetWriter `__. Parquet supports ``{"NONE", "SNAPPY", "GZIP", "BROTLI", "LZ4", "ZSTD"}`` (where ``"GZIP"`` is also known as "zlib" or "deflate"). If a dict, the keys are column names (the same column names that :py:obj:`ak.forms.Form.columns` returns and :py:obj:`ak.forms.Form.select_columns` accepts) and the values are compression algorithm names, to compress each column differently. :type compression: None, str, or dict :param compression_level: Compression level, passed to `pyarrow.parquet.ParquetWriter `__. Compression levels have different meanings for different compression algorithms: GZIP ranges from 1 to 9, but ZSTD ranges from -7 to 22, for example. Generally, higher numbers provide slower but smaller compression. :type compression_level: None, int, or dict None :param row_group_size: Number of entries in each row group (except the last), passed to `pyarrow.parquet.ParquetWriter.write_table `__. If None, the Parquet default of 64 MiB is used. :type row_group_size: int or None :param data_page_size: Number of bytes in each data page, passed to `pyarrow.parquet.ParquetWriter `__. If None, the Parquet default of 1 MiB is used. :type data_page_size: None or int :param parquet_flavor: If None, the output Parquet file will follow Arrow conventions; if ``"spark"``, it will follow Spark conventions. Some systems, such as Spark and Google BigQuery, might need Spark conventions, while others might need Arrow conventions. Passed to `pyarrow.parquet.ParquetWriter `__. as ``flavor``. :type parquet_flavor: None or ``"spark"`` :param parquet_version: Parquet file format version. Passed to `pyarrow.parquet.ParquetWriter `__. as ``version``. :type parquet_version: ``"1.0"``, ``"2.4"``, or ``"2.6"`` :param parquet_page_version: Parquet page format version. Passed to `pyarrow.parquet.ParquetWriter `__. as ``data_page_version``. :type parquet_page_version: ``"1.0"`` or ``"2.0"`` :param parquet_metadata_statistics: If True, include summary statistics for each data page in the Parquet metadata, which lets some applications search for data more quickly (by skipping pages). If a dict mapping column names to bool, include summary statistics on only the specified columns. Passed to `pyarrow.parquet.ParquetWriter `__. as ``write_statistics``. :type parquet_metadata_statistics: bool or dict :param parquet_dictionary_encoding: If True, allow Parquet to pre-compress with dictionary encoding. If a dict mapping column names to bool, only use dictionary encoding on the specified columns. Passed to `pyarrow.parquet.ParquetWriter `__. as ``use_dictionary``. :type parquet_dictionary_encoding: bool or dict :param parquet_byte_stream_split: If True, pre-compress floating point fields (``float32`` or ``float64``) with byte stream splitting, which collects all mantissas in one part of the stream and exponents in another. Passed to `pyarrow.parquet.ParquetWriter `__. as ``use_byte_stream_split``. :type parquet_byte_stream_split: bool or dict :param parquet_coerce_timestamps: If None, any timestamps (``datetime64`` data) are coerced to a given resolution depending on ``parquet_version``: version ``"1.0"`` and ``"2.4"`` are coerced to microseconds, but later versions use the ``datetime64``'s own units. If ``"ms"`` is explicitly specified, timestamps are coerced to milliseconds; if ``"us"``, microseconds. Passed to `pyarrow.parquet.ParquetWriter `__. as ``coerce_timestamps``. :type parquet_coerce_timestamps: None, ``"ms"``, or ``"us"`` :param parquet_old_int96_timestamps: If True, use Parquet's INT96 format for any timestamps (``datetime64`` data), taking priority over ``parquet_coerce_timestamps``. If None, let the ``parquet_flavor`` decide. Passed to `pyarrow.parquet.ParquetWriter `__. as ``use_deprecated_int96_timestamps``. :type parquet_old_int96_timestamps: None or bool :param parquet_compliant_nested: If True, use the Spark/BigQuery/Parquet `convention for nested lists `__, in which each list is a one-field record with field name "``element``"; otherwise, use the Arrow convention, in which the field name is "``item``". Passed to `pyarrow.parquet.ParquetWriter `__. as ``use_compliant_nested_type``. :type parquet_compliant_nested: bool :param parquet_extra_options: Any additional options to pass to `pyarrow.parquet.ParquetWriter `__. :type parquet_extra_options: None or dict :param storage_options: Any additional options to pass to `fsspec.core.url_to_fs `__ to open a remote file for writing. :type storage_options: None or dict Returns: ``pyarrow._parquet.FileMetaData`` instance Writes an Awkward Array to a Parquet file (through pyarrow). .. code-block:: python >>> array1 = ak.Array([[1, 2, 3], [], [4, 5], [], [], [6, 7, 8, 9]]) >>> ak.to_parquet(array1, "array1.parquet") created_by: parquet-cpp-arrow version 9.0.0 num_columns: 1 num_rows: 6 num_row_groups: 1 format_version: 2.6 serialized_size: 0 If the ``array`` does not contain records at top-level, the Arrow table will consist of one field whose name is ``""`` iff. ``extensionarray`` is False. If ``extensionarray`` is True``, use a custom Arrow extension to store this array. Otherwise, generic Arrow arrays are used, and if the ``array`` does not contain records at top-level, the Arrow table will consist of one field whose name is ``""``. See :py:obj:`ak.to_arrow_table` for more details. Parquet files can maintain the distinction between "option-type but no elements are missing" and "not option-type" at all levels, including the top level. However, there is no distinction between ``?union[X, Y, Z]]`` type and ``union[?X, ?Y, ?Z]`` type. Be aware of these type distinctions when passing data through Arrow or Parquet. See also :py:obj:`ak.to_arrow`, which is used as an intermediate step.