ak.full_like ------------ .. py:module: ak.full_like Defined in `awkward.operations.ak_full_like `__ on `line 14 `__. .. py:function:: ak.full_like(array, fill_value, *, dtype=None, including_unknown=False, highlevel=True, behavior=None) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param fill_value: Value to fill the new array with. :param dtype: Overrides the data type of the result. :type dtype: None or NumPy dtype :param including_unknown: If True, the ``unknown`` type is considered a value type and is converted to a zero-length array of the specified dtype; if False, ``unknown`` will remain ``unknown``. :type including_unknown: bool :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool, default is True :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict This is the equivalent of NumPy's ``np.full_like`` for Awkward Arrays. Although it's possible to produce an array of ``fill_value`` with the structure of an ``array`` using :py:obj:`ak.broadcast_arrays`: .. code-block:: python >>> array = ak.Array([[1, 2, 3], [], [4, 5]]) >>> ak.broadcast_arrays(array, 1) [, ] >>> ak.broadcast_arrays(array, 1.0) [, ] Such a technique takes its type from the scalar (``1`` or ``1.0``), rather than the array. This function gets all types from the array, which might not be the same in all parts of the structure. Here is an extreme example: .. code-block:: python >>> array = ak.Array([ ... [{"x": 0.0, "y": []}, ... {"x": 1.1, "y": [1]}, ... {"x": 2.2, "y": [1, 2]}], ... [], ... [{"x": 3.3, "y": [1, 2, None, 3]}, ... False, ... False, ... True, ... {"x": 4.4, "y": [1, 2, None, 3, 4]}]]) >>> ak.full_like(array, 12.3).show() [[{x: 12.3, y: []}, {x: 12.3, y: [12]}, {x: 12.3, y: [12, 12]}], [], [{x: 12.3, y: [12, 12, None, 12]}, True, ..., True, {x: 12.3, y: [12, ...]}]] The ``"x"`` values get filled in with ``12.3`` because they retain their type (``float64``) and the ``"y"`` list items get filled in with ``12`` because they retain their type (``int64``). Booleans get filled with True because ``12.3`` is not zero. Missing values remain in the same positions as in the original ``array``. (To fill them in, use :py:obj:`ak.fill_none`.) See also :py:obj:`ak.zeros_like` and :py:obj:`ak.ones_like`. (There is no equivalent of NumPy's ``np.empty_like`` because Awkward Arrays are immutable.)