ak.argcartesian --------------- .. py:module: ak.argcartesian Defined in `awkward.operations.ak_argcartesian `__ on `line 15 `__. .. py:function:: ak.argcartesian(arrays, axis=1, *, nested=None, parameters=None, with_name=None, highlevel=True, behavior=None) :param arrays: Each value in this dict or iterable can be any array-like data that :py:obj:`ak.to_layout` recognizes. :type arrays: dict or iterable of arrays :param axis: The dimension at which this operation is applied. The outermost dimension is ``0``, followed by ``1``, etc., and negative values count backward from the innermost: ``-1`` is the innermost dimension, ``-2`` is the next level up, etc. :type axis: int :param nested: If None or False, all combinations of elements from the ``arrays`` are produced at the same level of nesting; if True, they are grouped in nested lists by combinations that share a common item from each of the ``arrays``; if an iterable of str or int, group common items for a chosen set of keys from the ``array`` dict or slots of the ``array`` iterable. :type nested: None, True, False, or iterable of str or int :param parameters: Parameters for the new :py:obj:`ak.contents.RecordArray` node that is created by this operation. :type parameters: None or dict :param with_name: Assigns a ``"__record__"`` name to the new :py:obj:`ak.contents.RecordArray` node that is created by this operation (overriding ``parameters``, if necessary). :type with_name: None or str :param highlevel: If True, return an :py:obj:`ak.Array`; otherwise, return a low-level :py:obj:`ak.contents.Content` subclass. :type highlevel: bool :param behavior: Custom :py:obj:`ak.behavior` for the output array, if high-level. :type behavior: None or dict Computes a Cartesian product (i.e. cross product) of data from a set of ``arrays``, like :py:obj:`ak.cartesian`, but returning integer indexes for :py:obj:`ak.Array.__getitem__`. For example, the Cartesian product of .. code-block:: python >>> one = ak.Array([1.1, 2.2, 3.3]) >>> two = ak.Array(["a", "b"]) is .. code-block:: python >>> ak.cartesian([one, two], axis=0).show() [(1.1, 'a'), (1.1, 'b'), (2.2, 'a'), (2.2, 'b'), (3.3, 'a'), (3.3, 'b')] But with argcartesian, only the indexes are returned. .. code-block:: python >>> ak.argcartesian([one, two], axis=0).show() [(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)] These are the indexes that can select the items that go into the actual Cartesian product. .. code-block:: python >>> one_index, two_index = ak.unzip(ak.argcartesian([one, two], axis=0)) >>> one[one_index] >>> two[two_index] All of the parameters for :py:obj:`ak.cartesian` apply equally to :py:obj:`ak.argcartesian`, so see the :py:obj:`ak.cartesian` documentation for a more complete description.