--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.14.1 kernelspec: display_name: Python 3 (ipykernel) language: python name: python3 --- How to convert to/from ROOT RDataFrame ====================================== The [ROOT RDataFrame](https://root.cern.ch/doc/master/classROOT_1_1RDataFrame.html) is a declarative, parallel framework for data analysis and manipulation. `RDataFrame` reads columnar data via a data source. The transformations can be applied to the data to select rows and/or to define new columns, and to produce results: histograms, etc. ```{code-cell} ipython3 import awkward as ak import ROOT ``` From Awkward to RDataFrame -------------------------- The function for Awkward → `RDataFrame` conversion is {func}`ak.to_rdataframe`. The argument to this function requires a dictionary: `{ : }`. This function always returns * {class}`cppyy.gbl.ROOT.RDF.RInterface` object. ```{code-cell} ipython3 array_x = ak.Array( [ {"x": [1.1, 1.2, 1.3]}, {"x": [2.1, 2.2]}, {"x": [3.1]}, {"x": [4.1, 4.2, 4.3, 4.4]}, {"x": [5.1]}, ] ) array_y = ak.Array([1, 2, 3, 4, 5]) array_z = ak.Array([[1.1], [2.1, 2.3, 2.4], [3.1], [4.1, 4.2, 4.3], [5.1]]) ``` The arrays given for each column have to be equal length: ```{code-cell} ipython3 assert len(array_x) == len(array_y) == len(array_z) ``` The dictionary key defines a column name in RDataFrame. ```{code-cell} ipython3 df = ak.to_rdataframe({"x": array_x, "y": array_y, "z": array_z}) ``` The {func} `ak.to_rdataframe` function presents a generated on demand Awkward Array view as an `RDataFrame` source. There is a small overhead of generating Awkward RDataSource C++ code. This operation does not execute the `RDataFrame` event loop. The array data are not copied. The column readers are generated based on the run-time type of the views. Here is a description of the `RDataFrame` columns: ```{code-cell} ipython3 df.Describe().Print() ``` The `x` column contains an Awkward Array with a made-up type; `awkward::Record_cKnX5DyNVM`. Awkward Arrays are dynamically typed, so in a C++ context, the type name is hashed. In practice, there is no need to know the type. The C++ code should use a placeholder type specifier `auto`. The type of the variable that is being declared will be automatically deduced from its initializer. From RDataFrame to Awkward -------------------------- The function for `RDataFrame` → Awkward conversion is {func}`ak.from_rdataframe`. The argument to this function requires a tuple of strings that are the `RDataFrame` column names. This function always returns * {class}`ak.Array` type. ```{code-cell} ipython3 array = ak.from_rdataframe( df, columns=( "x", "y", "z", ), ) array ```