ak.to_dataframe --------------- .. py:module: ak.to_dataframe Defined in `awkward.operations.ak_to_dataframe `__ on `line 10 `__. .. py:function:: ak.to_dataframe(array) :param array: Array-like data (anything :py:obj:`ak.to_layout` recognizes). :param how: Passed to `pd.merge `__ to combine DataFrames for each multiplicity into one DataFrame. If None, a list of Pandas DataFrames is returned. :type how: None or str :param levelname: Computes a name for each level of the row index from the number of levels deep. :type levelname: int -> str :param anonymous: Column name to use if the ``array`` does not contain records; otherwise, column names are derived from record fields. :type anonymous: str Converts Awkward data structures into Pandas `MultiIndex `__ rows and columns. The resulting DataFrame(s) contains no Awkward structures. :py:obj:`ak.Array` structures can't be losslessly converted into a single DataFrame; different fields in a record structure might have different nested list lengths, but a DataFrame can have only one index. If ``how`` is None, this function always returns a list of DataFrames (even if it contains only one DataFrame); otherwise ``how`` is passed to `pd.merge `__ to merge them into a single DataFrame with the associated loss of data. In the following example, nested lists are converted into MultiIndex rows. The index level names ``"entry"``, ``"subentry"`` and ``"subsubentry"`` can be controlled with the ``levelname`` parameter. The column name ``"values"`` is assigned because this array has no fields; it can be controlled with the ``anonymous`` parameter. .. code-block:: python >>> ak.to_dataframe(ak.Array([[[1.1, 2.2], [], [3.3]], ... [], ... [[4.4], [5.5, 6.6]], ... [[7.7]], ... [[8.8]]])) values entry subentry subsubentry 0 0 0 1.1 1 2.2 2 0 3.3 2 0 0 4.4 1 0 5.5 1 6.6 3 0 0 7.7 4 0 0 8.8 In this example, nested records are converted into MultiIndex columns. (MultiIndex rows and columns can be mixed; these examples are deliberately simple.) .. code-block:: python >>> ak.to_dataframe(ak.Array([ ... {"I": {"a": _, "b": {"i": _}}, "II": {"x": {"y": {"z": _}}}} ... for _ in range(0, 50, 10)])) I II a b x i y z entry 0 0 0 0 1 10 10 10 2 20 20 20 3 30 30 30 4 40 40 40 The following two examples show how fields of different length lists are merged. With ``how="inner"`` (default), only subentries that exist for all fields are preserved; with ``how="outer"``, all subentries are preserved at the expense of requiring missing values. .. code-block:: python >>> ak.to_dataframe(ak.Array([{"x": [], "y": [4.4, 3.3, 2.2, 1.1]}, ... {"x": [1], "y": [3.3, 2.2, 1.1]}, ... {"x": [1, 2], "y": [2.2, 1.1]}, ... {"x": [1, 2, 3], "y": [1.1]}, ... {"x": [1, 2, 3, 4], "y": []}]), ... how="inner") x y entry subentry 1 0 1 3.3 2 0 1 2.2 1 2 1.1 3 0 1 1.1 The same with ``how="outer"``: .. code-block:: python >>> ak.to_dataframe(ak.Array([{"x": [], "y": [4.4, 3.3, 2.2, 1.1]}, ... {"x": [1], "y": [3.3, 2.2, 1.1]}, ... {"x": [1, 2], "y": [2.2, 1.1]}, ... {"x": [1, 2, 3], "y": [1.1]}, ... {"x": [1, 2, 3, 4], "y": []}]), ... how="outer") x y entry subentry 0 0 NaN 4.4 1 NaN 3.3 2 NaN 2.2 3 NaN 1.1 1 0 1.0 3.3 1 NaN 2.2 2 NaN 1.1 2 0 1.0 2.2 1 2.0 1.1 3 0 1.0 1.1 1 2.0 NaN 2 3.0 NaN 4 0 1.0 NaN 1 2.0 NaN 2 3.0 NaN 3 4.0 NaN